387 research outputs found

    Comparison of the diagnostic value of symmetric dimethylarginine, cystatin C, and creatinine for detection of decreased glomerular filtration rate in dogs

    Get PDF
    BACKGROUND: Early detection of decreased glomerular filtration rate (GFR) in dogs is challenging. Current methods are insensitive and new biomarkers are required. OBJECTIVE: To compare overall diagnostic performance of serum symmetric dimethylarginine (SDMA) and serum cystatin C to serum creatinine, for detection of decreased GFR in clinically stable dogs, with or without chronic kidney disease (CKD). ANIMALS: Ninety-seven client-owned dogs: 67 dogs with a diagnosis or suspicion of CKD and 30 healthy dogs were prospectively included. METHODS: Prospective diagnostic accuracy study. All dogs underwent physical examination, systemic arterial blood pressure measurement, urinalysis, hematology and blood biochemistry analysis, cardiac and urinary ultrasound examinations, and scintigraphy for estimation of glomerular filtration rate (mGFR). Frozen serum was used for batch analysis of SDMA and cystatin C. RESULTS: The area under the curve of creatinine, SDMA, and cystatin C for detection of an mGFR <30.8 mL/min/L was 0.98 (95% confidence interval [CI], 0.93-1.0), 0.96 (95% CI, 0.91-0.99), and 0.87 (95% CI, 0.79-0.93), respectively. The sensitivity of both creatinine and SDMA at their prespecified cutoffs (115 Όmol/L [1.3 mg/dL] and 14 Όg/dL) for detection of an abnormal mGFR was 90%. The specificity was 90% for creatinine and 87% for SDMA. When adjusting the cutoff for cystatin C to correspond to a diagnostic sensitivity of 90% (0.49 mg/L), specificity was lower (72%) than that of creatinine and SDMA. CONCLUSIONS AND CLINICAL IMPORTANCE: Overall diagnostic performance of creatinine and SDMA for detection of decreased mGFR was similar. Overall diagnostic performance of cystatin C was inferior to both creatinine and SDMA

    Serum Concentrations of Symmetric Dimethylarginine and Creatinine in Dogs with Naturally Occurring Chronic Kidney Disease

    Get PDF
    Citation: Hall, J. A., Yerramilli, M., Obare, E., Yerramilli, M., Almes, K., & Jewell, D. E. (2016). Serum Concentrations of Symmetric Dimethylarginine and Creatinine in Dogs with Naturally Occurring Chronic Kidney Disease. Journal of Veterinary Internal Medicine, 30(3), 794-802. doi:10.1111/jvim.13942Background: Serum concentrations of symmetric dimethylarginine (SDMA) detected chronic kidney disease (CKD) in cats an average of 17.0 months before serum creatinine (Cr) concentrations increased above the reference interval. Objectives: To report on the utility of measuring serum SDMA concentrations in dogs for detection of CKD before diagnosis by measurement of serum Cr. Animals: CKD dogs (n = 19) included those persistently azotemic for ?3 months (n = 5), dogs that were azotemic at the time of death (n = 4), and nonazotemic dogs (n = 10). CKD dogs were compared with healthy control dogs (n = 20). Methods: Retrospective study, whereby serum Cr concentrations were determined by enzymatic colorimetry and serum SDMA concentrations were determined by liquid chromatography-mass spectrometry in dogs with necropsy confirmed CKD. Results: Serum SDMA increased before serum Cr in 17 of 19 dogs (mean, 9.8 months; range, 2.2-27.0 months). Duration of elevations in serum SDMA concentrations before the dog developed azotemia (N = 1) or before the dog died (N = 1) was not determined. Serum SDMA and Cr concentrations were linearly related (r = 0.84; P < .001). Serum SDMA (r = -0.80) and serum Cr (r = -0.89) concentrations were significantly related to glomerular filtration rate (both P < .001). Conclusion and Clinical Importance: Using serum SDMA as a biomarker for CKD allows earlier detection of kidney dysfunction in dogs than does measurement of serum Cr. Earlier detection might be desirable for initiating renoprotective interventions that slow progression of kidney disease. © 2016 American College of Veterinary Internal Medicine

    Quantitative and Qualitative Urinary Cellular Patterns Correlate with Progression of Murine Glomerulonephritis

    Get PDF
    The kidney is a nonregenerative organ composed of numerous functional nephrons and collecting ducts (CDs). Glomerular and tubulointerstitial damages decrease the number of functional nephrons and cause anatomical and physiological alterations resulting in renal dysfunction. It has recently been reported that nephron constituent cells are dropped into the urine in several pathological conditions associated with renal functional deterioration. We investigated the quantitative and qualitative urinary cellular patterns in a murine glomerulonephritis model and elucidated the correlation between cellular patterns and renal pathology

    Measurement of prompt J/ψ pair production in pp collisions at √s = 7 Tev

    Get PDF
    Peer reviewe

    Study of hadronic event-shape variables in multijet final states in pp collisions at √s=7 TeV

    Get PDF
    Peer reviewe

    Constraints on parton distribution functions and extraction of the strong coupling constant from the inclusive jet cross section in pp collisions at √s=7 TeV

    Get PDF
    Peer reviewe
    • 

    corecore